Package: splinetree 0.2.0

splinetree: Longitudinal Regression Trees and Forests

Builds regression trees and random forests for longitudinal or functional data using a spline projection method. Implements and extends the work of Yu and Lambert (1999) <doi:10.1080/10618600.1999.10474847>. This method allows trees and forests to be built while considering either level and shape or only shape of response trajectories.

Authors:Anna Neufeld [aut, cre], Brianna Heggeseth [aut, ths]

splinetree_0.2.0.tar.gz
splinetree_0.2.0.zip(r-4.5)splinetree_0.2.0.zip(r-4.4)splinetree_0.2.0.zip(r-4.3)
splinetree_0.2.0.tgz(r-4.5-any)splinetree_0.2.0.tgz(r-4.4-any)splinetree_0.2.0.tgz(r-4.3-any)
splinetree_0.2.0.tar.gz(r-4.5-noble)splinetree_0.2.0.tar.gz(r-4.4-noble)
splinetree_0.2.0.tgz(r-4.4-emscripten)splinetree_0.2.0.tgz(r-4.3-emscripten)
splinetree.pdf |splinetree.html
splinetree/json (API)
NEWS

# Install 'splinetree' in R:
install.packages('splinetree', repos = c('https://anna-neufeld.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/anna-neufeld/splinetree/issues

On CRAN:

Conda:

5.24 score 4 stars 29 scripts 159 downloads 28 exports 58 dependencies

Last updated 6 years agofrom:352a5bc29e. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 31 2025
R-4.5-winNOTEMar 31 2025
R-4.5-macNOTEMar 31 2025
R-4.5-linuxNOTEMar 31 2025
R-4.4-winNOTEMar 31 2025
R-4.4-macNOTEMar 31 2025
R-4.4-linuxNOTEMar 31 2025
R-4.3-winNOTEMar 31 2025
R-4.3-macNOTEMar 31 2025

Exports:avSizeflatten_predictorsgetNodeDatanodePlotplotImpplotNodepredict_y_trainingpredictCoeffspredictCoeffsForestpredictYpredictYForestprojectedR2projectedR2ForestpruneForestspaghettiPlotsplineForestsplineTreesplineTreePlotstPlotstPrintterminalNodeSummarytreeSimilaritytreeSizetreeSummaryvarImpCoeffvarImpYyR2yR2Forest

Dependencies:bitbit64clicliprclustercolorspacecpp11crayondplyrfansifarverforcatsgenericsggformulaggplot2ggridgesgluegtablehavenhmsisobandlabelinglabelledlatticelifecyclemagrittrMASSMatrixmclustmgcvmosaicmosaicCoremosaicDatamunsellnlmepillarpkgconfigprettyunitsprogresspurrrR6RColorBrewerreadrrlangrpartscalesstringistringrtibbletidyrtidyselecttreeClusttzdbutf8vctrsviridisLitevroomwithr

Introduction to Forest Building with splinetree

Rendered fromForest-Intro.html.asisusingR.rsp::asison Mar 31 2025.

Last update: 2018-09-12
Started: 2018-09-12

Introduction to splinetree

Rendered fromLong-Intro.html.asisusingR.rsp::asison Mar 31 2025.

Last update: 2018-09-12
Started: 2018-09-12

Introduction to Tree Building with splinetree

Rendered fromTree-Intro.html.asisusingR.rsp::asison Mar 31 2025.

Last update: 2018-09-12
Started: 2018-09-12

Readme and manuals

Help Manual

Help pageTopics
Compute the average tree size in a forestavSize
Retrieve the subset of the data found at a given terminal nodegetNodeData
Plots the trajectories of each terminal node side by side.nodePlot
Create a barplot of relative variable importance scores.plotImp
Plot the predicted trajectory for a single nodeplotNode
Predict spline coefficients for a testset using a spline treepredictCoeffs
Predict spline coefficients for a testset using a splineforest.predictCoeffsForest
Predictions from a spline treepredictY
Predict responses for a testset using a splineforest.predictYForest
Computes percent of variation in projected response explained by a splinetree.projectedR2
Computes a level-based or shape-based evaluation metric for a splineforest.projectedR2Forest
Prune each tree in forest using a given complexity parameter.pruneForest
Create a faceted spaghetti plot of a splinetree modelspaghettiPlot
Build a spline random forest.splineForest
Build a splinetree model.splineTree
Creates a tree plot of a spline tree.splineTreePlot
Plots a splinetree.stPlot
Print a spline tree in the style of print.rpartstPrint
Prints a summary of a terminal node in a treeterminalNodeSummary
Returns a measure of how similar the two trees are.treeSimilarity
Returns number of terminal nodes in a tree.treeSize
Returns the tree frame.treeSummary
Random Forest Variable Importance based on spline coefficientsvarImpCoeff
Random Forest Variable Importance based on YvarImpY
Computes percent of variation in response explained by spline tree.yR2
Computes a level-based evaluation metric for a splineforest that was built WITH an intercept.yR2Forest